Abstract

In this study, Tb-doped PbTe nanoparticles with variable Tb3+ content were synthesized by a simple hydrothermal technique. The synthesized nanoparticles were characterized by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and powder X-ray diffraction (XRD). XRD patterns indicated that the particles were excellently crystallized and attributed to the cubic PbTe phase. The SEM images certify that the substitution of Tb into the lattice of PbTe does not change the morphology of PbTe nanoparticles. SEM images displayed that the size of the particles was in the range of 25-80 nm. The energy of the bandgap of doped-PbTe and PbTe nanoparticles expected from the chief absorption edges of the UV-Vis diffuse reflectance spectrum. Blue shifts in DRS spectra of PbTe were noticed by increasing the concentration of the Tb3+ ions. The incorporation of Tb3+ into the PbTe lattice was confirmed by the XPS technique. The electrical conductance of various Tb-doped PbTe samples is higher than the pure PbTe, and elevates with temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.