Abstract
The hydrothermal reactions of nitrate or chloride salts of Co(II), Zn(II), Cd(II), Hg(II) and Ag(I) with an unsymmetrical benzotriazole derivative 1H-1,2,3-benzotriazole-1-propionic acid (Hbtap) afforded five new metal–organic coordination polymers with formula of [M(btap)2(H2O)2] n (M = Co 1, Zn 2, Cd 3), [Hg(btap)Cl] n (4) and {[Ag(btap)]·H2O} n (5), which were characterized by X-ray diffraction and spectroscopic methods. The anionic btap− ligands in these complexes assume the same anti conformation, but show different coordination behaviors toward transition metal ions. Complexes 1, 2 and 3 are isostructural and reveal infinite one-dimensional (1D) looped-chain structures constructed by hexacoordinated metal centers and 2-connected btap− bridges. Complex 4 features 1D zigzag polymeric arrays, which are interlinked with each other resulting in a chiral three-dimensional (3D) 4-connected framework. In complex 5, the 3-connected ligands join Ag(I) atoms into a 1D ribbon motif. The photoluminescence spectra of three d10 metal complexes 2, 3 and 4 were measured at room temperature. The emission peaks of these complexes resemble that of the free ligand and can be ascribed to the intraligand π–π* transitions.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.