Abstract

Investigation into the incorporation of complex transition metal-organic units into vanadium oxide structures has resulted in the preparation of several novel composite materials. Hydrothermal reactions of V(2)O(5), 2,2'-bipyridine, an appropriate Zn or Cu starting material, and H(2)O under a variety of conditions yielded the organic-inorganic hybrid materials [[Zn(2,2'-bpy)](2)V(4)O(12)] (1) and [Cu(2,2'-bpy)V(4)O(10.5)] (2). Blocking an additional coordination site on the secondary metal center by using a tridentate organonitrogen ligand, 2,2':6',2' '-terpyridine in place of 2,2'-bipyridine, allowed the isolation of [Cu(terpy)V(2)O(6)] (3) and [[Zn(terpy)](2)V(6)O(17)] (4). The structure of 1 is a two-dimensional zinc vanadate layer, composed of rings containing four corner-sharing [VO(4)] vanadium(V) tetrahedra linked through six zinc square pyramids, with the 2,2'-bipyridine groups attached to the zinc centers and directed above and below the plane of the layer. In contrast to 1, the layer of 2 is based on a two-dimensional vanadium oxide substructure composed of vanadium(IV) square pyramids and vanadium(V) tetrahedra with copper square pyramids attached through corner-sharing interactions with vanadium tetrahedra such that the bipyridine ligands attached to the copper sites form staggered stacks above and below the plane of the layer. Compound 3 consists of one-dimensional vanadium oxide chains of corner-sharing tetrahedra linked through copper-terpyridine units into a two-dimensional bimetallic oxide of composition [CuV(2)O(6)], while the layer structure of 4 contains more complex one-dimensional vanadium oxide chains composed of fused rings of six corner-sharing vanadium oxide tetrahedra which are linked into a layer through [Zn(terpy)](2+) units.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.