Abstract
Hydrocarbon contamination accumulated on titanium (Ti) implant surfaces during storage and sterilization is unavoidable and difficult to remove. It impairs the bioactivity of implants, restricts initial interactions between implants and the surrounding biological environment, and has become a common challenge for Ti implants. To overcome this problem, sterilization was considered as the final surface modification and a novel method, hydrothermal sterilization (HS), was proposed. Briefly, stored sandpaper-polished Ti specimens were sterilized in a glass container with pure water at 121 °C for 20 min and kept in the same water until utilization. As a control, another group of specimens was sterilized with conventional autoclaving (AC) at 121 °C for 20 min and stored in sterilization pouches after being dried at 60 °C. Compared with AC, HS deposited numerous nano-sized particles on the substrates, reduced the atomic percentage of the surface carbon, and transformed the Ti surface to a super hydrophilic status. HS also increased the attachment rate, spread, proliferation, and the mineralized nodule areas of rat bone marrow-derived osteoblasts. These results suggest that HS enhances the bioactivity of Ti implants for osteoblasts, and that this biofunctionalization was attributed to nanostructure construction, hydrophilic conversion, and the effective removal of hydrocarbons. Hydrothermal sterilization is proposed to be used as a universal sterilization method for all kinds of titanium implants without apatite coating.
Highlights
Titanium has been used as raw material for dental implants for over 40 years because of its chemical inertness, outstanding biocompatibility, and mechanical strength suitable to match with natural bone [1]
At a higher magnification of 50,000×, changes were not found on AC specimens, whereas numerous scattering nano-sized particles (20 nm, approximately) were found on hydrothermal sterilization (HS)-treated specimens
The effects of hydrothermal sterilization on in vitro osteoconductivity of sandpaper-polished Ti were proved to be substantial, and the osteoblastic phenotype was greatly enhanced as evidenced by the results of Alkaline phosphatase (ALP) activity and mineralized nodules assays
Summary
Titanium has been used as raw material for dental implants for over 40 years because of its chemical inertness, outstanding biocompatibility, and mechanical strength suitable to match with natural bone [1]. Since the very beginning of its orthopedic application, surface modification was imposed to improve osseointegration under the expectations of the material engineer and clinician. Various techniques, including apatite coating, topology reconstruction, and chemical modulation have been studied [2,3,4]. Nowadays, it seems that the development of novel surface modification methods with sophisticated procedures has become the trend. Some simple measurements after production have enhanced the bioactivity of classical implants with a pleasant surprise. These studies implied that the osseointegration of
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.