Abstract

Various acidic components (MOx: phosphate, sulfate, tungstate and niobate) were loaded on Ce0.75Zr0.25O2 powders by an impregnation method. The as-prepared catalysts were hydrothermally treated at 760 °C for 48 h in air containing 10 vol.% H2O to obtain the aged catalysts. The catalysts were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, H2 programmed-reduction, NH3 adsorption and deNOx activity measurements. The results showed that, among the catalysts investigated, the phosphated Ce0.75Zr0.25O2 catalyst showed the highest hydrothermal stability. The remained high acidity of the phosphated catalyst with moderate redox property helped to maintain the excellent NH3-SCR activity of hydrothermally aged catalyst. Cerium tungstate led to the poor redox property of the tungstated catalyst although the acidity of catalyst was still high. The decomposition of sulfates at temperatures higher than 600 °C restrained the usage of sulfated catalysts in high temperature conditions. The overall dehydration of niobate to niobium oxides led to the low acidity of hydrothermally aged Nb2O5-Ce0.75Zr0.25O2 catalyst.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.