Abstract

Different morphologies of tin dioxide (SnO2) architectures were prepared by increasing reaction time (12, 18, 24 and 48h) under a facile hydrothermal process and followed by calcination. The crystal structures and morphologies of the hierarchical architecture were characterized in detail by means of powder X-ray diffraction (XRD), energy dispersive X-ray detector (EDX), scanning electron microscope (SEM) and transmission electron microscope (TEM). The results showed that the porous flower-like SnO2 architecture was obtained by 24h hydrotherm treatment. Most importantly, the sensors based on porous flower-like SnO2 architecture exhibited perfect sensing performance toward ethanol with excellent selectivity, high response and fast response-recovery capability compared with other SnO2 nanoflowers for the same ethanol concentration at 300°C. The response value was about 208 and the response-recovery time was around 8 and 7s for 500ppm ethanol, respectively. The enhancement in gas sensing properties was attributed to the unique structures, including the flower-like structure and porous feature, which provided more gas active center and diffusion pathways. The results indicated that porous flower-like SnO2 architecture was a potential candidate for fabricating effective ethanol sensor. Furthermore, the possible growth mechanism and the ethanol sensing mechanism of the architecture were discussed, too.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call