Abstract

The alteration of CsAlSi5O12, a possible host for 137Cs in tailored nuclear waste ceramics, was studied under simulated nuclear waste repository conditions of 100°, 200°, and 300°C with a confining pressure of 30 MPa. The cesium radiophase was found to be quite stable in water or 3N CaCl2, or 3N MgCl2 but not in 3N NaCl or 3N KCI or a bittern brine. The acid resistance of CsAlSi5O12 can be deduced from its stability in hydrothermal MgCl2 brine. Possible reaction mechanisms include the formations of pollucite and quartz in deionized water and the formation of Na or K feldspars and quartz in the presence of NaCl or KCl brines, respectively. A comparison of the various cesium aluminosilicates indicates that pollucite (CsAlSi2O6) is the best candidate for cesium‐137 immobilization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.