Abstract

Ni-rich layered oxides LiNixTM1-xO2 (TM = Co, Mn, Al, x > 0.6) cathode materials for lithium-ion batteries have an anisotropic volume change during lithium deintercalation process, which easily causes microcracks and rapid capacity decay. In the paper, carbonate precursor prepared by a urea-based hydrothermal method is lithiated at different temperatures of 750–850 °C to obtain agglomerate LiNi0.8Co0.1Mn0.1O2 (NCM811) cathode material with different primary sizes. The sample synthesized at 750 °C shows broadening diffraction peaks due to its near-nano grain size, which results in the merging of (006)/(012) and (018)/(110) peaks. The effect of anisotropic volume shrinkage is effectively weakened by fine grain range, which alleviates formation of intergranular crack that is commonly considered as an important reason for capacity decay of Ni-rich layered oxide cathode materials. In addition, two new types of intragranular microcracks are first identified in cyclic NCM811. One extends along the spinel phase and layered phase interface, and the other extends along the vertical (003) R crystal plane. The difference in atomic plane spacing during the electrochemical cycles plays a key role in the growth of intragranular microcracks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.