Abstract

Hydrothermal method was utilized to prepare reduced graphene oxide (RGO) and fabricate ZnO–RGO hybrid (ZnO–RGO) with zinc nitrate hexahydrate and graphene oxide (GO) as raw materials under pH value of 11 adjusted by ammonia water. During the process of reduction of GO, hydrothermal condition with ammonia provided thermal and chemical factors to synthesize RGO. The retained functional groups on RGO planes played an important role in anchoring ZnO to RGO, which was characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning and transmission electron microscopy and photoluminescence spectra. The various mass ratios of zinc nitrate hexahydrate to GO used to prepare ZnO–RGO impacted significantly on the morphology of ZnO nanostructures such as nanoparticles and nanorods. And, the RGO sheets wrapped ZnO nanoparticles and nanorods very tightly. After the emission of photo electrons from ZnO, RGO in ZnO–RGO can effectively transfer the photo electrons to exhibit a high performance and reproducibility in photocatalytic degradation toward methylene blue (MB) absorbed on the surface of RGO through π–π conjugation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call