Abstract

Novel corncob-derived solid acid catalysts were successfully synthesized for the first time by the hydrothermal method. The influences of different preparation conditions were investigated, and the structure-function relationships of the resulting catalysts were also discussed on the basis of the analysis of structure and composition. In comparison to conventional solid acid catalysts, the corncob-derived catalyst synthesized under optimized conditions exhibited higher catalytic activity in esterification reactions, yielding nearly 90% methyl oleate in only 2 h. The catalyst retained satisfactory catalytic activity for esterification, even after 8 reaction cycles. Solid-state magic angle spinning (MAS) (13)C nuclear magnetic resonance (NMR) investigations further indicated that the catalyst was composed of polycyclic aromatic carbon sheets bearing -SO3H, -COOH, and -OH groups in adequate amounts and with proper proportions, contributing to its excellent catalytic activity. This work provides a green method to synthesize solid acid catalysts from biomass wastes and may contribute to a holistic approach for biomass conversion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call