Abstract

In this work, hydrothermal liquefaction experiments of iron impregnated water hyacinth were performed with a motive to enhance bio-oil yields along with generation of nanometal carbon hybrids. Iron nanoparticles were impregnated and its metal loading was determined by ICP-MS. The impact of operating parameters like temperature, biomass to water ratio and reaction time on bio-oil yields was studied. During hydrothermal liquefaction a maximum total bio-oil yield of 38.1% was obtained at 280 °C along with formation of nanometal carbon hybrids. The light oil and heavy oil fractions were characterized by GCMS and NMR for determining the key components. The light oil mainly comprises of alkanes, alcohols and esters whereas heavy oil contains esters, ethers, carboxylic acids and phenols. XRD and XPS of Fe-impregnated water hyacinth and residues confirmed the transition of Fe+3/+2 to Fe0. TEM analysis resulted an average particle size of Fe nanoparticles around 19.6 nm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call