Abstract

AbstractHydrothermal rutile (TiO2) is a widely distributed accessory mineral in hydrothermal veins or alteration assemblages of porphyry deposits and provides important information for further understanding hydrothermal fluid signatures. This study determines the geochemical composition and U-Pb dates of hydrothermal rutile from the Yulong porphyry Cu-Mo deposit in east Tibet, China. Three types of TiO2 polymorphs have been identified based on their Raman spectroscopic, textural, and chemical characteristics. (1) Brookite and anatase pseudomorphs after titanite in a fine-grained matrix, indicating low-temperature hydrothermal fluids destabilizing primary Ti-bearing minerals during argillic alteration (type-I). (2) Elongated and prismatic rutile present in hydrothermal veins or in clusters in accompanying alteration envelope characterized by weak zoning (type-II). And (3) rutile intergrown with sulfides in hydrothermal veins, characterized by well-developed patchy and sector zoning (type-III). In contrast to the type-I and type-II TiO2 polymorphs, tungsten is enriched in backscattered bright patches and sector zones in type-III rutile, which is due to the substitution of W6+ in the Ti4+ octahedral site. The mechanism of the enrichment of tungsten is effectively driven by the halogen-rich (F, Cl) aqueous fluids during hydrothermal mineralization. In situ U-Pb dating of the type-III rutile yields a lower intercept age of 41.8 ± 1.2 Ma, which brackets the timing of the Cu-Mo mineralization. The relationship between rutile textures and composition indicates that W-bearing rutile can serve as a recorder of hydrothermal processes in porphyry Cu deposits.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call