Abstract
Bauxite deposits are an important source of Al and also host a variety of critical metals, including rare earth elements (REEs). However, the parent rocks of bauxite deposits generally have low REE contents, leading to uncertainty over the REE sources and enrichment mechanisms. In this study, we report high REE (2095 ppm; Ce = 1340 ppm) contents in the Lijiatian bauxite deposit in Luxi County, western Hunan Province, South China. The Lijiatian bauxite deposit is the largest deposit in Hunan Province, with a total Al resources exceeding 7 × 106 tons. The ore-bearing strata in the lower Permian Liangshan Formation (ca. 275 Ma) are comprised a 3–5-m-thick bauxite layer (bauxite ore/clay) and an underlying 4–8-m-thick Fe layer (Fe ore/Fe-rich clay). The high REE contents in the bauxites can be attributed to the widespread presence of bastnäsite. The bastnäsite commonly coexists with authigenic chlorite, which formed at temperatures of 221–285 °C, indicative of a hydrothermal origin. Uranium–Pb dating of the bastnäsite yielded an age of 141.4 ± 7.0 Ma, indicating a hydrothermal overprint occurred during the Early Cretaceous, which resulted in the enrichment of REEs in the bauxites. The high contents of REEs, Ba, and P in the Cambrian Niutitang Formation black shales indicate it was a potential source of these elements for bastnäsite and coexisting barite and apatite. The deep-seated hydrothermal fluids (enriched in HF, CO2, and H2S) associated with the late Yanshanian extensional tectonic event in South China (155–123 Ma) ascended along fractures. The ascending fluids interacted with the black shales, extracting REEs, Ba, and P. When the fluids reached a certain depth, they mixed with the infiltrating basinal waters to form a mineralising fluid. The fluid then migrated towards the bauxite layers, underwent cooling and depressurisation, and precipitated bastnäsite, barite, apatite, and chlorite. We propose that a hydrothermal event led to the enrichment of REEs in the bauxites in Hunan Province. Considering the scarcity of REEs in the parent rocks of bauxites worldwide, hydrothermal activity likely has a key role in REE enrichment in bauxites.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.