Abstract

AbstractMajor corrosion has been found at depth in carbonate hydrocarbon reservoirs from different geologic provinces. Fluid inclusion microthermometry and stable isotopic compositions of carbonate cements, predating major corrosion, constrain the interpretation of the evolution of parental fluids during progressive burial and prior to the major corrosion event. Post‐major corrosion mineral paragenesis includes pyrite (‐marcasite), anhydrite, kaolinite (dickite) and fluorite. Although the post‐corrosion mineral paragenesis represents minor volumes of rock, it may provide valuable insights into the post‐corrosion brine chemistry.Using reactive transport numerical models, the roles of cooling and/or mixing of brines on corrosion have been evaluated as controls for dolomitization, deep burial corrosion and precipitation of the post‐corrosion mineral paragenesis. Modelling results show that cooling of deep‐seated fluids moving upward along a fracture may cause minor calcite dissolution and porosity generation. Significant dolomitization along a fracture zone and nearby host‐rock only occurs when deep‐seated fluids have high salinities (4 mol Cl kg−1 of solution) and Darcian flow rates are relatively high (1 m3 m−2 year−1). Only minor volumes of quartz and fluorite precipitate in the newly formed porosity. Moreover, modelling results cannot reproduce the authigenic precipitation of kaolinite (dickite at high temperatures) by cooling.As an alternative to cooling as a cause of corrosion, mixing between two brines of different compositions and salinities is represented by two main cases. One case consists of the flow up along a fracture of deep‐seated fluids with higher salinities than the fluid in the wall rock. Dolomite does not precipitate at a fracture zone. Nevertheless, minor volumes of dolomite are formed away from the fracture. The post‐corrosion mineral paragenesis can be partly reproduced, and the results are comparable to those obtained from cooling calculations. Minor volumes of quartz and fluorite are formed, and kaolinite‐dickite does not precipitate. The major outputs of this scenario are calcite dissolution and slight net increase in porosity. A second case corresponds to the mixing of low salinity deep‐seated fluids, flowing up along fractures, with high salinity brines within the wall rock. Calculations predict major dissolution of calcite and precipitation of dolomite. The post‐corrosion mineral paragenesis can be reproduced. High volumes of quartz, fluorite and kaolinite‐dickite precipitate and may even completely occlude newly formed porosity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call