Abstract

A series of LaOF:Ln(3+) (Ln = Eu, Tb, Sm, Dy, Tm, and/or Ho) nanocrystals with good dispersion have been successfully prepared by the hydrothermal method followed a heat-treatment process. Under ultraviolet radiation and low-voltage electron beam excitation, the LaOF:Ln(3+) nanocrystals show the characteristic f-f emissions of Ln(3+) (Ln = Eu, Tb, Sm, Dy, Tm, or Ho) and give red, blue-green, orange, yellow, blue, and green emission, respectively. Moreover, there exists simultaneous luminescence of Tb(3+), Eu(3+), Sm(3+), Dy(3+), Tm(3+), or Ho(3+) individually when codoping them in the single-phase LaOF host (for example, LaOF:Tb(3+), Eu(3+)/Sm(3+); LaOF:Tm(3+), Dy(3+)/Ho(3+); LaOF:Tm(3+), Ho(3+), Eu(3+) systems), which is beneficial to tune the emission colors. Under low-voltage electron beam excitation, a variety of colors can be efficiently adjusted by varying the doping ions and the doping concentration, making these materials have potential applications in field-emission display devices. More importantly, the energy transfer from Tm(3+) to Ho(3+) in the LaOF:Tm(3+), Ho(3+) samples under UV excitation was first investigated and has been demonstrated to be a resonant type via a quadrupole-quadrupole mechanism. The critical distance (R(Tm-Ho)) is calculated to be 28.4 Å. In addition, the LaOF:Tb(3+) and LaOF:Tm(3+) phosphors exhibit green and blue luminescence with better chromaticity coordinates, color purity, and higher intensity compared with the commercial green phosphor ZnO:Zn and blue phosphor Y(2)SiO(5):Ce(3+) to some extent under low-voltage electron beam excitation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call