Abstract

To minimise the transmission of the SARS-CoV-2 virus, there has been a substantial increase in the production and usage of synthetic personal protective equipment (PPE) globally. Consequently, single-use PPE have been widely adopted without appropriate regulations for their disposal, leading to extensive environmental contamination worldwide. This study investigates the non-catalytic hydrothermal deconstruction of different PPE items, including isolation gowns, gloves, goggles, face shields, surgical masks, and filtering-facepiece respirators. The selected PPE items were subjected to hydrothermal deconstruction for 90 min in the presence of 30-bar initial oxygen pressure, at temperatures ranging between 250 °C and 350 °C. The solid content in form of total suspended solids (TSS) was reduced up to 97.6%. The total chemical oxygen demand (tCOD) and soluble chemical oxygen demand (sCOD) decreased with increasing deconstruction temperature, and at 350 °C the lowest tCOD and sCOD content of 546.6 mg/L and 470 mg/L, respectively, was achieved. Short-chained volatile fatty acids were produced after 90 min of deconstruction, predominantly acetic acid at concentrations up to 8974 mg/L. Ammonia nitrogen content (NH3–N) of up to 542.6 mg/L was also detected. Carbon dioxide (CO2) and unreacted oxygen (O2) were the main gaseous by-products at up to 15.6% (w/w) and 88.7% (w/w), respectively. The findings suggest that non-catalytic hydrothermal deconstruction is a viable option to process and manage PPE waste.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.