Abstract
After the Fukushima nuclear disaster, the nuclear materials community has been vastly investing in accident tolerant fuel (ATF) concepts to modify/replace Zircaloy cladding material. Iron-chromium-aluminum (FeCrAl) alloys are one of the leading contenders in this race. In this study, we investigated FA-SMT (or APMT-2), PM-C26M, and Fe17Cr5.5Al over a time period of 6 months in simulated BWR environments and compared their performance with standard Zirc-2 and SS316 materials. Our results implied that water chemistry along with alloy chemistry has a profound effect on the corrosion rate of FeCrAl alloys. Apart from SS316 and Zirc-2 tube specimens, all FeCrAl alloys showed a mass loss in hydrogen water chemistry (HWC). FA-SMT displayed minimal mass loss compared to PM-C26M and Fe17Cr5.5Al because of its higher Cr content. The mass gain of FeCrAl alloys in normal water chemistry (NWC) is significantly less when compared to Zirc-2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.