Abstract
This work presents a novel modified Mixed Integer Hybrid Differential Evolution (MIHDE) algorithm, for solving the unit commitment problem of a hydrothermal power system. Hydrothermal scheduling involves the optimisation of a non-linear objective function with a set of system and hydraulic constraints. Discrete and dynamic constraints such as unit start-up/shutdown and minimum-up/minimum-downtime limits are also included in the hydro unit commitment. The problem of hydrothermal coordination is a mixed integer non-linear optimisation problem, which is well-suited for the use of MIHDE. In this paper, the MIHDE algorithm is modified in order to handle the reservoir end-volume and load balance constraints in the hydrothermal scheduling. The performance of the proposed approach is validated by illustration with standard test systems. The results of the proposed approach are compared with those techniques reported in literature. From the numerical results, it is found that the modified MIHDE-based approach is able to provide better solution at a relatively lesser computational effort.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Energy Technology and Policy
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.