Abstract

The variability in soil hydrothermal conditions generally contributes to the diverse distribution of vegetation cover types and growth characteristics. Previous research primarily focused on soil moisture alone or the average values of soil hydrothermal conditions in the crop root zone (0–100 cm). However, it is still unclear whether changes in gross primary productivity (GPP) depend on the hydrothermal conditions at different depths of soil layers within the root zone. In this study, the soil hydrothermal conditions from three different layers, surface layer 0–7 cm (Level 1, L1), shallow layer 7–28 cm (Level 2, L2), and deep layer 28–100 cm (Level 3, L3) in the Qilian Mountains area, northwestern China, are obtained based on ERA5-Land reanalysis data. The Sen-MK trend test, Pearson correlation analysis, and machine learning algorithm were used to explore the influence of these three soil hydrothermal layers on GPP. The results show that soil moisture values increase with soil depth, while the soil temperature values do not exhibit a stratified pattern. Furthermore, the strong correlation between GPP and deep soil hydrothermal conditions was proved, particularly in terms of soil moisture. The Random Forest feature importance extraction revealed that deep soil moisture (SM-L3) and surface soil temperature (ST-L1) are the most influential variables. It suggests that regulations of soil hydrothermal conditions on GPP may involve both linear and nonlinear effects. This study can obtain the temporal and spatial dynamics of soil hydrothermal conditions across different soil layers and explore their regulations on GPP, providing a basis for clarifying the relationship between soil and vegetation in arid mountain systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call