Abstract
Tobacco stalks are an abundant biomass resource which are otherwise treated as waste. In this work, the effect of hydrothermal carbonization temperature and time on the structures, chemical compositions and combustion characteristics of hydrochars obtained from tobacco stalks were evaluated. The carbon content, higher heating value, and energy yield increased with accompanying decrease in hydrogen and oxygen contents with the increase of treatment temperature and time. The evolution of the H/C and O/C atomic ratios indicated dehydration and devolatilization processes occurred during hydrothermal carbonization. The weight loss, combustion range and characteristic temperatures of tobacco stalks were significantly modified after hydrothermal carbonization, resulting in higher ignition temperatures and higher energy density. The kinetics model, Coats–Redfern method revealed the activation energy of hydrochars in zone 2 and 3 were among 43.7–74.8kJ/mol and 46.7–85.8kJ/mol, respectively. Our results show that hydrothermal carbonization reaction can facilitate transforming tobacco stalks into energy-rich solid fuel.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.