Abstract

Hydrothermal carbonization (HTC) was performed on homogenized food waste (FW) in a batch reactor at 200, 230, and 260 °C for 30 min. Solid product, called hydrochar, was characterized by means of ultimate analysis, proximate analysis, higher heating value (HHV), and ash content. On the other hand, liquid products were analyzed by inductively coupled plasma (ICP), total carbon, and pH. HHV of FW was increased from 25.1 to 33.1 MJ kg−1 by HTC. Ash content is less than 3% for hydrochars as well as the raw FW. Fixed carbon increased from 18.8 to 22.4% with the increase of HTC temperature. Fuel characteristics indicate hydrochar as a potential solid fuel and carbon storage. Therefore, a simplified simulation model was created for a continuous process that performs HTC of 1 t of FW per day. It was determined that HTC of food waste has potential to be a viable process for the production of solid fuel, primarily due to ease of drying product char.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.