Abstract

Hydrothermal carbonization (HTC) is the most cost-effective, environmentally friendly, and efficient physicochemical and biochemical process for converting biomass to products with added value. The objective and novelty of this work is to produce and investigate the qualities of hydrochar fuel (as a solid fuel) from cow manure using human urine as a solvent in order to find a suitable replacement for conventional fuel (i.e., coal). HTC based studies were conducted in batch, at three different reaction temperatures (180 °C, 200 °C, and 220 °C) and two different reaction periods (2 and 4 h). For kinetic analysis and reaction mechanism of the combustion behavior of the produced hydrochar, the model free kinetic methods and the z-master plot were used. From the model free kinetics methods, it was observed that the resultant optimum average activation energy and pre-exponential factor for the produced hydrochar at 180 °C and 2 h reaction period (HTC_180_2) were ∼120 kJ/mol and ∼5.59 × 1025 sec−1, respectively. In addition, the little variation between ΔEα and ΔHα (∼10 kJ/mol) suggests that the combustion of produced hydrochar (HTC_180_2) occurred with minimal energy use. Furthermore, the hydrochar exhibited its highest heating value at 200 °C for 4 h (HTC_200_4) which was 1.44 times higher than the raw dung (13.4 MJ/kg) due to the HTC process. The produced hydrochar demonstrated a significant improvement compared to the conventional solvent, i.e. water.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call