Abstract

In this study, the chemical structures, fuel characteristic, and formation mechanism of hydrochar during hydrothermal carbonization (HTC) at 150–270 °C for 0–120 min were investigated using coking sludge (CS) as the feedstock. The results showed that the yield decreased from 96.86 to 60.98%, whereas the carbonization rate increased from 6.74 to 93.41% at 270 °C. More stable structures with aromatic and N-heterocycles rings were formed through hydrolysis and polymerization. The H/C and O/C ratio decreased from 1.75 to 0.60 to 1.04 and 0.09, and the combustion stability index (Hf) decreased from 0.86 to 0.60 °C.103, and the flammability index (S) increased from 24.16 to 26.42 %/(min2 °C3) 10−8, indicating an improvement of fuel performance. A kinetic model to describe the conversion of organic components of CS was developed to elucidate the formation mechanism of hydrochar combined with the change of water-soluble intermediates (SM). The solid-solid conversion reaction of protein and humus components was the predominant hydrochar formation pathway, with an activation energy (Ea) of 26.06 kJ/mol. The polymerization of aromatic compounds slightly participated in the hydrochar formation, with an Ea of 86.12 kJ/mol. The water-soluble intermediates mostly transformed into inorganic substances (IS) through decarboxylation, deamination, or decomposition reaction, with an Ea of 5.73 kJ/mol. This study provided insights for understanding the formation of hydrochar from CS through HTC, which is vital for controlling the polymerization of intermediates and solid-solid conversion to enhance the carbonization efficiency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call