Abstract

In this paper, the flow of non-Newtonian blood fluid with nanoparticles inside a vessel with a porous wall in presence of a magnetic field have been investigated. This study aimed to investigate various parameters such as magnetic field and porosity on velocity, temperature, and concentration profiles. In this research, three different models (Vogel, Reynolds and Constant) for viscosity have been used as an innovation. The governing equations are solved by Akbari-Ganji's Method (AGM) analytical method and the Finite Element Method (FEM) is used to better represent the phenomena in the vessel. The results show that increasing the Gr number, porosity and negative pressure increase the blood velocity and increasing the magnetic field intensity decrease the blood velocity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.