Abstract

The use of glass fibre-reinforced polymer (GFRP) composites in load-carrying constructions has significantly increased over the last few decades. Such GFRP composite structures may undergo significant changes in performance as a consequence of long-term environmental exposure. Vinyl ester (VE) resins are a class of thermosetting polymers increasingly being used in such structural composites. This increasing use of VE-based GFRPs in such applications has led to an increasing need to better understand the consequences of long-term environmental exposure on their performance. The reliable validation of the environmental durability of new VE-based GFRPs can be a time- and resource-consuming process involving costly testing programs. Accelerated hydrothermal ageing is often used in these investigations. This paper reviews the relevant literature on the hydrothermal ageing of vinyl ester-based GFRP with special attention to the fundamental background of moisture-induced ageing of GFRP, the important role of voids, and the fibre-matrix interface, on composite mechanical performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.