Abstract
Hydrotalcite-supported Pd-Cu catalyst for nitrate adsorption and catalytic reduction from water is prepared by co-impregnation method and characterized by surface area (BET), X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM) and X-ray photoelectron spectrum (XPS). The performance of adsorption and hydrogenation of nitrate was evaluated and compared with Al2O3, TiO2, and HZSM-supported Pd-Cu catalysts. The experimental results demonstrated that hydrotalcite-supported Pd-Cu catalyst exhibited a high surface area (185.3 m2/g) and mesopore structure (average pore diameter of 52.2 A). The active metal clusters were homogeneously dispersed on the support, and the size of the most was less than 10 nm. Excellent adsorption for nitrate resulted from that nitrate ions were forced to enter the interlayer space when the calcined hydrotalcite regenerated layer structure in nitrate solution. The adsorption isotherm could be well described by the Langmuir model. The comparison between the adsorption and catalytic hydrogenation for nitrate using hydrogen indicated that nitrate reduction on hydrotalcite-supported Pd-Cu catalysts was a consecutive and dynamic adsorption and catalytic hydrogenation process. Compared with the Al2O3, TiO2, and HZSM-supported catalysts, hydrotalcite-supported Pd-Cu catalyst possessed higher catalytic activity and selectivity. The analysis on the dissolving of metals in the solution demonstrated that there was hydrolyzation on the surface of the hydrotalcite-supported Pd-Cu catalyst. However, the concentrations of dissolved metals in the solution were lower than the standard executed in China. The activity of the hydrotalcite-supported Pd-Cu catalyst for nitrate reduction kept steady after repeated use.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.