Abstract

Chemical-looping combustion (CLC) is a promising technology that utilizes metal oxides as oxygen carriers for the combustion of fossil fuels to CO2 and H2O, with CO2 readily sequestrated after the condensation of steam. Thermally stable and reactive metal oxides are desirable as oxygen carrier materials for the CLC processes. Here, we report the performance of Cu-based mixed oxides derived from hydrotalcite (also known as layered double hydroxides) precursors as oxygen carriers for the combustion of solid fuels. Two types of CLC processes were demonstrated, including chemical looping oxygen uncoupling (CLOU) and in situ gasification (iG-CLC) in the presence of steam. The Cu-based oxygen carriers showed high performance for the combustion of two solid fuels (a lignite and a bituminous coal), maintaining high thermal stability, fast reaction kinetics, and reversible oxygen release and storage over multiple redox cycles. Slight deactivation and sintering of the oxygen carrier occurred after redox cycles at an very high operation temperature of 985 °C. We expect that our material design strategy will inspire the development of better oxygen carrier materials for a variety of chemical looping processes for the clean conversion of fossil fuels with efficient CO2 capture.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.