Abstract

Efforts are being made to improve the irrigation efficiency in the Murray-Darling River Basin, Australia, to deal with predicted rainfall decline and to reduce the incidence of secondary soil and water salinization. The latter commonly occurs as a result of locating water reservoirs upon relic drainage channels. To better manage irrigation, information is required about the spatial distribution of soil type and the stratigraphic features capable of redistributing deep-draining water. In previous research, electromagnetic (EM) induction instruments (e.g. EM38 and EM34) have been used to map the distribution of soil type, hydrological processes (e.g. deep drainage) and vadose-zone features. The aim of this research is to demonstrate how a joint inversion of EM38 and EM34 data, using a one-dimensional spatially constrained algorithm for quasi three-dimensional (quasi-3D) electrical conductivity imaging, can be used to infer the areal distribution of soil types and physiographic and hydrogeological units. The quasi-3D modeling of true electrical conductivity provides a framework for future environmental monitoring and management to mitigate the hydrological processes that drive localized secondary salinization in the study area.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.