Abstract

Hydrostatic pressure (HP) increases linearly with depth in aquatic environments, so that many fish species routinely experience moderate-to-high HP levels (i.e., from a few to dozens of MPa). Biological effects of this thermodynamic variable are evidenced by a reduced functionality of many biomolecular systems, even in barotolerant and barophilic species. It is likely that environmentally-relevant HP levels (i.e., above atmospheric) could also modulate the responsiveness to and toxic effects of pollutants in fish. Still, only a few laboratories have investigated this possibility. The already-published ecobarotoxicological studies have brought strong support to the notion that HP can indeed modulate pollutant response in shallow-water and deep-sea animals. A careful reassessment of toxicity responses is therefore required. To quantify the exact influence of HP in marine fish toxicology, a research framework is proposed that should ensure the collection of meaningful data for risk assessment, using standard toxicity testing and mechanistic approaches.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.