Abstract

Rotational electron-beam mastering (REBM) systems have been studied with the aim of achieving the high data density necessary to facilitate the fabrication of next-generation optical data media, such as holographic storage. This study reports the design and testing of an ionic liquid (IL)-lubricated hydrostatic spindle system comprising an IL bearing, IL supply pump, and ionic magnetic fluid seal; and its outgassing performance under high-vacuum conditions. An inner vacuum chamber pressure of approximately 10−4 Pa was maintained during rotation of the spindle system. The outgassed products, as measured by a quadrupole mass spectrometer, were primarily generated from the air components in the lubricant IL. The non-repeatable runout in the radial direction, which is an important parameter of REBM accuracy, was 100 nm for a rotational speed of less than 130 min−1. The proposed method can be used for a 100-nm scale REBM device.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call