Abstract

This article presents the rationale and methodology for developing an intrinsically safe device, namely, a hydrostatic fiber optic sensor with a position-sensitive detector for monitoring the level of oil products in large-capacity tanks at oil depots and during pumping in a raw material warehouses. This device suitable for continuous monitoring of the liquid level, based on the measurement of a hydrostatic column of liquid with automatic offset of changes in the density of the liquid. Offset is carried out by means of a displacer (a fully submerged float), inside which a housing with a position-sensitive detector (PSD) is integrated. Theoretical validation of the bellows suspension usage for a displacer is given. During filling a container with a liquid whose level is measured, liquid bellows, the movement of which is recorded by an optical triangulation sensor using the reflected infrared ray incident on the bottom of the bellows. The principle of the triangulation sensor operation is based on the geometric properties of the triangles. The pulses of infrared radiation come through a fiber optic cable. In order to measure the movement of the surface (the bottom of the bellows) by measuring the movement of the reflected beam, a position-sensitive detector is used, which is located in a remote controller. In this device for the intrinsic safety problem solution, optical inputs of a fiber optic flat cable are located in the active zone of the sensor, which is connected to the optical inputs of a position-sensitive detector, operated on the principles of photoelectric effect. The light spot moving along the sensitive zone and converted by the detector into a one-dimensional signal proportional to the distance to the object. hydrostatically applies pressure over the entire effective area of the measuring

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.