Abstract

Hydrogel scaffolds are explored as efficient methods to repair damaged organs or tissues. In this study, we developed a hybrid hydrogel system based on collagen (Col) and PEG-derived polymer (PEGF) for biomedical scaffold. The Col-PEGF hybrid hydrogel, in which different materials were combined and sequential interpenetrating networks were built, achieved significantly enhanced mechanical strength and viscoelasticity compared with the corresponding Col hydrogel or PEGF hydrogel. Degradation test indicated that Col enabled the hybrid hydrogel to be broken down via enzymatic degradation while PEGF contributed to the anti-degradation of the hydrogel. This balanced biodegradability of Col-PEGF hydrogel would be advantageous to the application for tissue engineering and regenerative medicine. Moreover, the Col-PEGF hybrid hydrogel with micron-sized pores and variable moisture performed good biocompatibility to NIH-3T3 cells, and supplied a favorable environment for cell growth and proliferation. Therefore, the Col-PEGF hydrogel will provide a promising biomedical scaffold for the therapy of tissue defects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.