Abstract

The possibility of controlling electron transport in a single molecule bridged between two metal electrodes represents the ultimate goal of molecular electronics. Molecular electronics aims also at introducing specific properties for the electron transport features both by controlling the structural details of the junction and by exploiting new chemical functionalities. Here we show that, in a molecular junction, where electrodes are represented by a gold substrate and the tip of a scanning tunneling microscope in electrochemical environment, the use of a single molecular species makes it possible to obtain different features for the tunneling current according to the structural details of the junction. In particular, molecules endowed with redox properties brought about by a hydroquinone/benzoquinone redox couple can show both transistor-like and negative differential resistance (NDR) effects. We discuss the mechanistic processes that might describe the different behavior in light of theories of electron...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.