Abstract

Wild edible plants have been used in cooking since ancient times. Recently, their value has improved as a result of the scientific evidence for their nutraceutical properties. Sanguisorba minor Scop. (salad burnet) plants were hydroponically grown and two consecutive cuts took place at 15 (C1) and 30 (C2) days after sowing. An untargeted metabolomics approach was utilized to fingerprint phenolics and other health-related compounds in this species; this approach revealed the different effects of the two cuts on the plant. S. minor showed a different and complex secondary metabolite profile, which was influenced by the cut. In fact, flavonoids increased in leaves obtained from C2, especially flavones. However, other secondary metabolites were downregulated in leaves from C2 compared to those detected in leaves from C1, as evidenced by the combination of the variable important in projections (VIP score > 1.3) and the fold-change (FC > 2). The storage of S. minor leaves for 15 days as fresh-cut products did not induce significant changes in the phenolic content and antioxidant capacity, which indicates that the nutraceutical value was maintained. The only difference evidenced during storage was that leaves obtained from C2 showed a lower constitutive content of nutraceutical compounds than leaves obtained from C1; except for chlorophylls and carotenoids. In conclusion, the cut was the main influence on the modulation of secondary metabolites in leaves, and the effects were independent of storage.

Highlights

  • Since ancient times, many wild edible plants have been used in cooking

  • We investigated firstly, the metabolomic characterization of salad burnet leaves from two consecutive cuts, which was analyzed in order to find new compounds for this species that have never been reported in the literature; and secondly, we evaluated the effect of storage, the pattern of the main nutraceutical compounds was monitored during the storage of the fresh-cut salad burnet leaves derived from both of the cuts

  • The secondary metabolites profile in leaves from both cuts of the salad burnet was investigated by using untargeted metabolomics (UHPLC-QTOF mass spectrometry) to depict the changes in the main secondary metabolites induced by the cuts

Read more

Summary

Introduction

Many wild edible plants have been used in cooking. Their value has improved thanks to their proven nutraceutical properties [1,2,3]. Some researchers have recognized wild edible plants as functional foods and as a new source of bioactive compounds that are beneficial to human health for their anti-inflammatory, antimicrobic, anticarcinogenic, cytotoxic and antiproliferative properties [4,5,6,7,8,9]. Salad burnet (S. minor Scop.) is a wild edible species traditionally known for its edibility, and use in folk medicine, nowadays, it is recognized for its potential as a nutraceutical species [12]. A number of wild plants have been used in the diet including the stems and leaves of Sanguisorba minor, the fruit of Rosa canina, bellota acorns of Quercus ilex [5], leaves of Umbelicus rupestris (Salisb.) Dandy [10] and wild edible flowers [11].

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.