Abstract
Hydrophobic chitosan aerogels are promising adsorbents for immiscible contaminants such as oils and organic solvents. However, few studies have reported the application of hydrophobic aerogels as adsorbent for organic contaminants dissolved in water. Herein, novel highly hydrophobic chitosan (CS) beads containing cellulose nanocrystals (CNC) and hydrophobized tannic acid (HTA) composite were prepared with different CS and CNC−HTA content to achieve an optimized adsorbent to remove emerging contaminants from water in batch and fixed-bed assays. The CS@CNC−HTA beads properties were assessed by FTIR, XRD, SEM, XPS, Micro-CT, WCA, and zeta potential. Supramolecular interactions and physical interlacements between CS and CNC−HTA enabled the formation of CS@CNC−HTA beads with high porosity (98.6%), great volume of open pore space (10.16 mm3) and hydrophobicity (121.8°). The 1:1 CS@CNC−HTA beads showed the best performance for removing the pharmaceutical sildenafil citrate, the basic blue 26 dye, and the surfactant cetylpyridinium chloride, reaching adsorption capacities of 86 (73%), 375 (84%), and 390 (90%) mg.g−1, respectively. The 1:1 CS@CNC−HTA beads efficiently removed sildenafil citrate, basic blue 26 and cetylpyridinium chloride in fixed-bed experiments with exhaustion times of 890, 300, and 470 min, respectively. Theoretical calculations and adsorption assays indicate that the main attractive interactions are pyridinium−π, π−π, electrostatic and hydrophobic.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.