Abstract

Dynamic wettability of oxidized metal (aluminum and titanium) surfaces could be tuned by chemical vapor deposition (CVD) of 1,3,5,7-tetramethylcyclotetrasiloxane (D(4)(H)). This facile CVD method produces not only monomeric layers but also particulate films by changing the CVD temperature, resulting in a marked difference in the final wetting properties. In the samples prepared at 80°C for ~3 days, D(4)(H) layers with thicknesses of ~0.5 nm were formed on the surfaces without discernible change in surface morphology, as evidenced by X-ray photoelectron spectroscopy and atomic force microscopy. After this D(4)(H) monomeric layer formation, the hydrophilic oxidized aluminum and titanium surfaces became hydrophobic (advancing/receding water contact angles (θ(A)/θ(R))=102-104°/99-102°) showing essentially negligible contact angle hysteresis. Performing CVD of D(4)(H) at 180°C for ~1 day produced opaque film with particulate morphologies with diameters in the range of 500 nm to 4 μm observed on the surfaces. This geometric morphology enhanced the surface hydrophobicity (θ(A)/θ(R)=163°/160-161°). Droplets on these negligible-hysteresis surfaces moved very easily without "pinning".

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call