Abstract

Ab initio molecular dynamics (AIMD) simulations of over 4.5 ns were performed in the temperature range of T = 260-350 K with van der Waals corrections to investigate the relationship between local water density and tetrahedral order in bulk water and in the presence of a hydrophobe, tetramethylurea (TMU). We demonstrate that in bulk water, defects consisting of 5- and higher coordinated water are a major contributor to dynamics. Close to a hydrophobe, 3-coordinated defects take over. The co-existence of these defects gives rise to very different local densities. We propose that the slowing down of rotational motion close to a hydrophobe is induced by an interplay between density and order with the slowing down decreasing in the following order: (i) low-density ordered-water, (ii) normal-density ordered-water, (iii) high-density ordered-water and (iv) disordered-water. The proportions of these water environments vary with temperature. These local environments also support the idea of water's polymorphism, i.e., the existence of the high- and low-density states in supercooled water.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.