Abstract

Abstract This study aims to improve the hydrophobic properties and corrosion resistance of fluorinated acrylate coatings. The surface of nano-SiO2 was modified by the silicone coupling reagent (KH-570), and the reactive functional groups were introduced to modify fluorinated acrylates. The functionalized SiO2-modified waterborne fluorinated acrylate emulsion was prepared by free polymerization with dual initiators. The structure of the polymer was analyzed by Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectro-meter (1H-NMR), X-ray photoelectron spectroscopy (XPS) and Waters gel chromatography (GPC). The properties of the films and coatings were analyzed by contact angle, atomic force microscopy, scanning electron microscopy, and electrochemical analysis. The results showed that the contact angle reached 120° when the SiO2 content was 3%, the electrochemical impedance value reached 1.49 × 107 Ω·cm2, and the pencil hardness was 3H.

Highlights

  • This study aims to improve the hydrophobic properties and corrosion resistance of fluorinated acrylate coatings

  • KH-570 was used to modify the surface of nano-SiO2 to obtain functionalized nano-SiO2, and a dual initiator was used to initiate the radical polymerization of the fluorine-containing acrylic monomers

  • There was a peak at 1,710 cm−1 corresponding to C]O stretching vibration in the modified SiO2, which proved that KH-570 was successfully used to modify the surface of SiO2

Read more

Summary

Introduction

Abstract: This study aims to improve the hydrophobic properties and corrosion resistance of fluorinated acrylate coatings. The surface of nano-SiO2 was modified by the silicone coupling reagent (KH-570), and the reactive functional groups were introduced to modify fluorinated acrylates. The functionalized SiO2-modified waterborne fluorinated acrylate emulsion was prepared by free polymerization with dual initiators. The structure of the polymer was analyzed by Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectro-meter (1H-NMR), X-ray photoelectron spectroscopy (XPS) and Waters gel chromatography (GPC). The properties of the films and coatings were analyzed by contact angle, atomic force microscopy, scanning electron microscopy, and electrochemical analysis. The results showed that the contact angle reached 120° when the SiO2 content was 3%, the electrochemical impedance value reached 1.49 × 107 Ω·cm, and the pencil hardness was 3H

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call