Abstract
Trans-anethole is an important ingredient in many flavors, fragrances and pharmaceutical formulations. Heterogeneous catalysis provides the opportunity for its green synthesis from 4′-methoxypropiophenone via a cascade of Meerwein-Ponndorf-Verley reduction followed by dehydration. Zr-containing zeolites were especially active catalysts. Surprisingly, Zr-HY was more active than Zr-Beta or mesoporous Zr-MSU. The effect of pore size, hydrophobicity and co-solvent has been investigated. Pyridine poisoning revealed that weak Lewis acid sites can catalyze the MPV reduction but stronger acid sites are required for the dehydration. The hydrophobicity and the ratio of open/closed Zr sites were higher for Zr-HY than Zr-Beta. Adding a moderately polar co-solvent like p-xylene more than doubled the reaction rate compared to only 2-pentanol as solvent. For an efficient cascade reaction, a hydrophobic catalyst with large micropores is required which combines hydrogen transfer and dehydration activities, together with an inert co-solvent that balances the concentration of both substrates inside the zeolite.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.