Abstract

The importance of the hydrophobic interaction in stabilizing native protein structure has long been appreciated. However, more than other component forces, this one has resisted quantitative description. We present two approximate methods of assessing the hydrophobic component to the free energy of protein folding. Both are expressed in terms of what can be called hydrophobic moments of the protein. The first method is intended to yield an approximate value for the hydrophobic energy. This energy is calculated from a set of atomic coordinates in terms of the hydrophobicity (or 0th hydrophobic moment) of each amino acid residue and its accessibility or lack of it to aqueous solvent. The second method considers the first moment of the hydrophobicity of a group of residues, the hydrophobic moment. Segments of secondary structure in folded proteins tend to have hydrophobic moments that oppose each other. For example, alpha-helices on the protein surface tend to have one hydrophobic face and one hydrophilic face, with the hydrophilic face out towards the solvent. This pattern of organization is often apparent from a computer model of the protein that shows the magnitude and direction of the hydrophobic moment of each segment of secondary structure. Examples are given for the incorrectly folded structures of Novotný et al [J Mol Biol 177:787, 1984] and for the correct structures to which they correspond.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.