Abstract

The deposition of thin and uniform dielectric film on graphene is an important step for electronic applications. Here, we tackled this problem by combining a simple chemical treatment of graphene surface and a modification of standard atomic layer deposition (ALD). Instead of common approaches trying to convert hydrophobic graphene surface into hydrophilic one, we took the opposite way by applying a self-assembled-monolayer, hexamethyldisilazane (HMDS) to make defect-independent, more hydrophobic surface condition. In addition, Al2O3 ALD using trimethylaluminum (TMA) and water (H2O) was interrupted several times and the surface was air-exposed during the interruption to seed the following ALD processes. This combination greatly improved the uniformity of dielectric film and accomplished a successful deposition of 10 nm-thick Al2O3 on graphene with subnanometer roughness except for the locations of wrinkles and poly(methyl methacrylate) (PMMA) residues. Electrochemical impedance measurements revealed a 300-fold increase in the charge-transfer resistance by employing this modified ALD process. No change in the Raman spectra was observed after the dielectric film growth, demonstrating that the method proposed here is nondetrimental to the graphene quality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.