Abstract

Developing a safe and potent repellent of mosquitoes applicable to human skins is an effective measure against the spread of mosquito-borne diseases. Recently, we have identified that hydrophobic solutions such as low viscosity polydimethylsiloxane (L-PDMS) spread on a human skin prevent mosquitoes from staying on and biting it. This is likely due to the ability of L-PDMS in wetting mosquito legs and exerting a capillary force from which the mosquitoes attempt to escape. Here we show three additional functions of L-PDMS that can contribute to repel Aedes albopictus, by combining physicochemical analysis and behavioral assays in both an arm cage and a virtual flight arena. First, L-PDMS, when mixed with topical repellents and applied on a human skin, enhances the effect of topical repellents in reducing mosquito bites by efficiently transferring them to mosquito legs upon contact. Second, L-PDMS applied to mosquito tarsi compromises visual object tracking during flight, exerting an influence outlasting the contact. Finally, L-PDMS applied to mosquito tarsi acts as an aversive reinforcer in associative learning, making mosquitoes avoid the conditioned odor. These results uncover a multifaceted potential of L-PDMS in altering a sequence of mosquito behaviors from biting a human skin, visual object tracking following takeoff, to the response to an odor linked with L-PDMS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call