Abstract
Hydrophobic silica sol coatings on textiles were investigated with respect to the influence of the solvents and the concentration of the sol. For this purpose, two silica sols, prepared with the hydrophobic additives octyltriethoxysilane and perfluoroctyltriethoxysilane were diluted by different solvents: water, ethanol and aceton. In case of using pure water for dilution, the hydrophobicity of coated textiles decreases drastically with increasing dilution of the applied sol. For coatings on polyester fabrics or mixed fabrics made from polyester and cotton, the use of the organic solvents ethanol or aceton leads to significant hydrophobicity even in case of strong dilution down to a sol concentration < 1%. The hydrophobic effect of coated polyamide textile is less. The reason for different hydrophobicity of coated textiles resulting from the use of water instead of organic solvents is explained by different surface morphologies of the coatings deposited on the textile fibres, as observed by REM. In case of using organic solvents the coatings contain a more flat morphology which covers the fibres completely. In contrast, sols with higher water content lead to less adhesive coatings with crack formation. The use of a combination of water with less inflammable organic solvents such as di(propylene glycol) n-propyl ether (DowanolTM DPnP) in hydrophobic silica sols yields textile coatings with good hydrophobicity, even in case of low sol concentration. For practical application of textile coatings, especially silica sols with high water content are of interest, due to less risk of inflammation and lower ecological impact. Therefore, the use of water diluted hydrophobic silica sols with small amounts of DPnP offers a chance for textile refinement by the sol–gel technique.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.