Abstract

A phage-display library of the cysteine-proteinase inhibitor, cystatin A, was constructed in which variants with the four N-terminal amino acids randomly mutated were expressed on the surface of filamenteous phage. Screening of this library for binding to papain gave predominantly variants with a glycine residue in position 4. This finding is in agreement with previous conclusions that glycine in this position is essential for tight binding of cystatin A to cysteine proteinases by allowing optimal interaction of the N-terminal region of the inhibitor with the enzyme. In contrast, the first three residues of the variants obtained by the screening were more variable. Two variants were identified with similar affinities for papain as the wild-type inhibitor, but with these residues, Val-Phe-Thr- or Ile-Leu-Leu, differing appreciably from those of the wild-type, Met-Ile-Pro. Other sequences of the N-terminal region, presumably mainly hydrophobic, can thus substitute for the wild-type sequence and contribute similar energy to the inhibitor-proteinase interaction. The two variants binding tightly to papain differed in their affinity for cathepsin B, demonstrating that cystatin variants with increased selectivity for a particular target cysteine proteinase can be obtained by phage-display technology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.