Abstract
Nowadays, the majority of the Reverse Water Gas Shift (RWGS) studies assume somehow model feedstock (diluted CO2/H2) for syngas production. Nonetheless, biogas streams contain certain amounts of CO/H2O which will decrease the obtained CO2 conversion values by promoting the forward WGS reaction. Since the rate limiting step for the WGS reaction concerns the water splitting, this work proposes the use of hydrophobic RWGS catalysts as an effective strategy for the valorization of CO2-rich feedstock in presence of H2O and CO. Over Fe-Mg catalysts, the different hydrophilicities attained over pristine, N- and B-doped carbonaceous supports accounted for the impact on the activity of the catalyst in presence of CO/H2O. Overall, the higher CO productivity (4.12 μmol/(min·m2)) attained by Fe-Mg/CDC in presence of 20 % of H2O relates to hindered water adsorption and unveil the use of hydrophobic surfaces as a suitable approach for avoiding costly pre-conditioning units for the valorization of CO2-rich streams based on RWGS processes in presence of CO/H2O.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.