Abstract

Adhesion of microorganisms to biomaterials with subsequent formation of biofilms on such foreign bodies as orthopedic trauma hardware is a critical factor in implant-associated infections; once a biofilm has been established, its microorganisms become recalcitrant to the host’s immune surveillance and markedly resistant to drugs. We have previously reported that painting with the hydrophobic polycation N,N-dodecyl,methyl-PEI (PEI = polyethylenimine) renders solid surfaces bactericidal in vitro. Herein we observe that N,N-dodecyl,methyl-PEI-derivatized titanium and stainless steel surfaces resist biofilm formation by Staphylococcus aureus compared to the untreated ones. Using imaging, microbiology-, histopathology-, and scanning electron microscopy (SEM) experiments in a clinically relevant large-animal (sheep) trauma model, we subsequently demonstrate in vivo that orthopedic fracture hardware painted with N,N-dodecyl,methyl-PEI not only prevents implant colonization with biofilm but also promotes bone healing. Functionalizing orthopedic hardware with hydrophobic polycations thus holds promise in supporting bone healing in the presence of infection in veterinary and human orthopedic patients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.