Abstract

Polyimide (PI) has been extensively used in 5G microelectronics however the relatively high dielectric constant (∼3.5) and moisture adsorption have greatly limit its practical applications in high-frequency region. Here hydrophobic PI/SiO2 composite films with low dielectric constant and excellent thermal stability were synthesized by dispersing methyl modified hollow silica nanospheres (MHS) into polyamic acid solution prior to imidization treatment. Comparing with unmodified hollow silica nanospheres (HS), the MHS obtained through methyl modification can disperse uniformly in the PI matrix. Thus, the relaxation and orientation polarization of the PI chains as well as their electron migration are suppressed, resulting in a significant decrease in dielectric constant. The PI/MHS-10% film exhibits a stable low dielectric constant (1.9–2.3) in the high-frequency range (8.2 GHz–12.4 GHz), meanwhile maintains a high breakdown voltage (192 kV/mm), mechanical properties (64 MPa) and an excellent thermal stability (Td5% = 546.5 °C; Tmax = 589.0 °C). Moreover. PI/MHS demonstrates much lower linear expansion coefficient of 25.0 ppm/K that better matches the substrate. The surface contact angle of PI/MHS increases from 73° to 110° and the water absorption rate decreases from 3.1% to 1.6%, effectively avoiding the moisture adsorption. This work provides a simple method to prepare high-performance composite films for 5G practical applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.