Abstract

Understanding the formation of H2CO3 in water from CO2 is important in environmental and industrial processes. Although numerous investigations have studied this reaction, the conversion of CO2 to H2CO3 in nanopores, and how it differs from that in bulk water, has not been understood. We use ReaxFF metadynamics molecular simulations to demonstrate striking differences in the free energy of CO2 conversion to H2CO3 in bulk and nanoconfined aqueous environments. We find that nanoconfinement not only reduces the energy barrier but also reverses the reaction from endothermic in bulk water to exothermic in nanoconfined water. Also, charged intermediates are observed more often under nanoconfinement than in bulk water. Stronger solvation and more favorable proton transfer with increasing nanoconfinement enhance the thermodynamics and kinetics of the reaction. Our results provide a detailed mechanistic understanding of an important step in the carbonation process, which depends intricately on confinement, surface chemistry, and CO2 concentration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.