Abstract
ABSTRACTPoly(acrylamide/sodium acrylate/N‐dodecyl acrylamide)s [poly(AM/NaAA/C12AM)s] with different hydrophobic microblock lengths (NH's) were prepared by the micellar copolymerization of acrylamide and sodium acrylate with a low amount of N‐dodecyl acrylamide (0.2 mol %), and the molecular structure was characterized by Fourier transform infrared spectroscopy, 1H‐NMR, and static light scattering. A combination of experiments involving viscosity measurement, fluorescence, and conductometry was applied to investigate the effect of NH on the interaction strength and binding capacity between poly(AM/NaAA/C12AM)s and C12H25SO4Na [sodium dodecyl sulfate (SDS)]. The viscosity, I3/I1 (the intensity ratio of the third vibrational band to the first band of pyrene molecules), and conductivity of the mixed system of copolymers with SDS all had different variation trends with the concentration of SDS. The binding capacity of the copolymers with SDS was calculated according to quantitative differences between the critical micelle concentration of the pure SDS solution and the mixed system. All of the results show that the interaction strength of SDS with the copolymers rose, and the binding capacity decreased with increasing NH. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014, 131, 40633.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.