Abstract

Widespread use of petrochemicals often leads to accidental releases in aquatic environments, occasionally with disastrous results. We have developed a hydrophobic and oleophilic mesh that separates oil from water continuously in situ via capillary action, providing a means of recovering spilt oil from surface waters. Steel mesh is dip-coated in a xylene solution of low-density polyethylene, creating a hydrophobic surface with tunable roughness and opening size. The hydrophobic mesh allows oil to pass through the openings while preventing the concomitant passage of water. A bench-top prototype demonstrated the efficacy of such an oil recovery device and allowed us to quantify the factors governing the ability of the mesh to separate oil and water. Preliminary data analysis suggested that the oleophilic openings behave somewhat like capillary tubes: the oil flux is inversely proportional to oil viscosity, and directly proportional to the size of the mesh openings. An unpinned meniscus model was found to predict the water intrusion pressure successfully, which increased as the opening size decreased. The trade-off between water intrusion and oil flow rate suggests an optimal pore size for given oil properties and sea conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.